## Physics with the Main Injector

- The Machine
- The Physics
  - Neutrino Mixing/Mass
  - Kaon System
  - B system
  - Electroweak
  - Beyond the standard model
  - The Higgs
- The Program

#### **Acknowledgements**

- Franco Bedeschi
- Ed Blucher
- Greg Bock
- Janet Conrad
- Peter Cooper
- Marcel Demarteau
- Al Goshaw
- Paul Grannis
- Steve Holmes
- Zoltan Ligeti
- John Marriner

- Shekhar Mishra
- Meenakshi Narain
- Adam Para
- Ron Ray
- Maria Roco
- Gordon Thomson
- Andre Turcot
- Harry Weerts
- Bruce Winstein
- Stan Wojcicki
- John Womersley
- U.T.Cobley et al

## **Livingston Plot**

# Progress in High Energy Physics Depends on Advancing the Energy Frontier



Increased Luminosity -->
Increased Constituent CM Energy

1800 --> 2000 GeV --> 40% for Top X sec

Title:

(ACCELERATOR.eps)

Creator:

Adobe Illustrator(TM) 7.0

Preview:

This EPS picture was not saved

with a preview included in it.

Comment:

This EPS picture will print to a PostScript printer, but not to

other types of printers.

#### Main Injector Performance

|                   | Pbar<br>Production          | Fast Spill           | Slow<br>Spill        |
|-------------------|-----------------------------|----------------------|----------------------|
| Energy(GeV)       | 120                         | 120                  | 120                  |
| Protons per cycle | <b>5.0</b> 10 <sup>12</sup> | 3.0 10 <sup>13</sup> | 3.0 10 <sup>13</sup> |
| Flat Top (sec)    | 0.01                        | 0.01                 | 1.00                 |
| Cycle Time (sec)  | 1.47                        | 1.87                 | 2.87                 |

Mixed Mode delivers 5.0 10<sup>12</sup> to pbar target and 2.5 10<sup>13</sup> to experimental target every 1.87 or 2.87 seconds.

#### **Proton Economics**

Collider/NuMI Mode delivers 5.0 10<sup>12</sup> to pbar target and 2.5 10<sup>13</sup> to experimental target every 1.87 secs.

<5% impact on pbar production

Collider/Slow Spill Mode delivers 5.0 10<sup>12</sup> to pbar target and 2.5 10<sup>13</sup> to experimental target every 2.87 secs.

15-20 % impact on pbar production stores will be longer, RECYCLER helps.

Slip Stacking(x2),
Booster Aperture(x~1.5) =>
5-10 10<sup>13</sup> protons ultimately.

## **Luminosity**



## **Antiprotons**

#### Production

- 120 Gev Protons impact on target
- 8 GeV antiprotons produced, large angles
- focussed using Lithium Lens

#### Accumulation

- antiprotons injected into large aperture accelerators
- Debuncher
- Accumulator
- Recycler

#### Cooling

- multiple stochastic cooling systems
- different bandwidth systems react to different characteristics of the beam

#### Acceleration

- Main Injector 8 to 150 GeV
- Tevatron 150 GeV 1000 GeV

## **Antiprotons**

#### Recycling

- during store luminosity reduces
- main effect is dilution of bunches (as compared to pbar attrition due to collisions)
- at end of store, half of antiprotons remain

#### – Reuse them!

- Deccelerate to 120 GeV
- extract from Tevatron into Main Injector
- decelerate to 8 GeV
- extract into Recycler Ring

#### Recycler Ring

- Permanent Magnet Storage Ring
- Magnetic field controlled by mechanical construction of magnets
- Reliable, less dependent on power glitches!
- Also used for cooling antiprotons after production and Accumulator

## **Tevatron Collider Parameters**

|                                                                          | Tevatron<br>Run Ib | Tevatron<br>Run II     | Tev33                       |
|--------------------------------------------------------------------------|--------------------|------------------------|-----------------------------|
| Bunch<br>Spacing<br>(nsec)                                               | 3500               | 396/132                | 132                         |
| Inst. Luminosity (10 <sup>31</sup> cm <sup>-2.</sup> sec <sup>-1</sup> ) | 1.6                | 5/20                   | 50                          |
| Int. /<br>Crossing                                                       | 1-2                | 1-2/1-2                | 5                           |
| Luminous<br>Region (cm)                                                  | 30                 | 30/15<br>(Xing Angle?) | 30                          |
| Integrated<br>Luminosity<br>(fb <sup>-1</sup> )                          | 0.1                | 2-4                    | 10-30                       |
|                                                                          |                    |                        | <b>Luminosity Levelling</b> |
|                                                                          |                    |                        |                             |

## **Tevatron Luminosity Evolution**

| Year | Peak Luminosity $10^{31} \text{ cm}^2 \text{ sec}^{-1}$ | Integrated<br>Luminosity<br>fb <sup>-1</sup> | Cumulative<br>Luminosity<br>fb <sup>-1</sup> |
|------|---------------------------------------------------------|----------------------------------------------|----------------------------------------------|
| 2000 | 5                                                       | 0.5                                          | 0.5                                          |
| 2001 | 10                                                      | 1.0                                          | 1.5                                          |
| 2002 | 20                                                      | 2.0                                          | 3.5                                          |
| 2003 | Shutdown                                                |                                              |                                              |
| 2004 | 40                                                      | 4.5                                          | 8.0                                          |
| 2005 | 50                                                      | 5.5                                          | 13.5                                         |
| 2006 | 50                                                      | 5.5                                          | 19.0                                         |
| 2007 | 50                                                      | 5.5                                          | 24.0                                         |
|      |                                                         |                                              |                                              |

#### **Main Injector Status**

- Civil Construction Complete except
  - Recycler Stochastic Cooling link.
- Installation Complete except
  - Recycler Magnets (95% complete)
  - Recycler Vacuum(65% under vacuum)
  - Main Injector-Recycler Injection Line
     All Complete February
  - Recycler Stochastic Cooling
- Commissioning
  - Beam Accelerated to 150 GeV(Injection Energy to Tevatron)
  - Beam Accelerated to 120 GeV
    - 95% Efficiency
    - 2.5 sec cycle time
    - 1.0 10<sup>13</sup> protons per cycle
- MI operating near design params.

## **Main Injector Status**

• 1 10<sup>13</sup> protons/cycle



• 2.5 sec cycle time



#### **Neutrinos: Status**

 $P_{osc} = \sin^2 2\theta \sin^2 (1.27\Delta m^2 L/E)$ So far... 3 indications



- Are all hints *really* oscillations?
- For each case, what's the  $\Delta m^2$ ?

#### **NuMI/MINOS**

Targets the "Atmospheric"
 Indications

Relatively low  $\Delta m^2$ Relatively High Energy Relatively Long Baseline

• Seeks  $n_m \rightarrow n_t$ 

Disappearance, Appearance Distinguishes sterile

- Two Detectors
- Main Injector to Minnesota , (Soudan Mine)

## NuMI/MINOS



### **Minos Near Detector**





#### **MINOS Far Detector**



#### **MINOS Physics Goals**

- Obtaining firm evidence for oscillations:
  - CC interaction rate
  - CC energy distribution
  - NC/CC rate ratio
  - NC energy distribution

These are statistical measurements, mode independent, capable of being done with the baseline detector configuration. In addition:

• Atmospheric neutrino measurements

## • Measurement of oscillation parameters, $\Delta m^2$ , $\sin^2 2\theta$

- CC energy distribution [statistical, with baseline detector configuration, oscillation mode independent]
- Rate and energy distribution measurements with narrow band beam running [requires NBB configuration]
- Observation of  $\tau$  production [measures product  $(\Delta m^2)^2$  x  $\sin^2 2\theta$  and is best done in the hybrid emulsion detector upgrade]

#### **MINOS Physics Goals**

- Determination of the oscillation mode(s)
  - Statistical measurements with the baseline detector
    - NC/CC rate measurements
    - Identification of  $v_e$  by topological criteria
    - Identification of  $v_{\tau}$  by its exclusive decay modes (works best if  $\Delta m^2$  is relatively high; some modes require NBB configuration)
  - Observation of appearance of  $v_{\tau}$  and/or  $v_{e}$  in the hybrid emulsion detector (not part of baseline)
    - Observation of  $\tau$  production and subsequent decay, identified by a kink close to the vertex  $(v_{\tau})$
    - Observation of electron originating at the production vertex  $(v_e)$
- MINOS experiment will be able to perform these measurements over the full allowed range of parameter space

#### Oscillation Parameter Measurement

- <u>CC event energy test</u>
- Select CC events (length)
- Calculate event energy (muon + EM + hadron)
- Shape difference indicates oscillations
- Dip position gives  $\Delta m^2$
- Dip depth gives  $\sin^2(2\theta)$
- Simulation includes detector energy resolution



## MINOS Energy Spectra

paw.metafile (Portrait A 4) Creator: HIGZ Version 1.23/07 Preview: This EPS picture was not saved with a preview included in it. Comment: This EPS picture will print to a PostScript printer, but not to other types of printers.

#### 10 kt-yr Exposure

Solid lines - energy spectrum without oscillations

Dashed histogram spectrum in presence of oscillations

#### MINOS Sensitivity, High Energy

$$\nu_{\mu} \rightarrow \nu_{\tau}$$

$$\nu_{\mu} \rightarrow \nu_{e}$$

Title:

(8377A37.eps)

Creator:

Adobe Illustrator(r) 6.0

Preview:

This EPS picture was not saved with a preview included in it.

Comment:

This EPS picture will print to a PostScript printer, but not to other types of printers.

A - Disappearance

B - NC/CC rate test

C - CC-event energy test

A - Electron appearance

B - NC/CC rate test

C - Disappearance

## **BooNe**

**BooNE**: The Booster Neutrino Experiment at Fermilab



A 2-phase experiment:

Phase 1: "MiniBooNE" (one detector) – 2001

• Disprove or Demonstrate LSND signal at  $\geq 5\sigma$  ( $\geq 10\sigma$  if E-dependence is used)

Phase 2: "BooNE" (two detectors) -2003

Measure oscillation parameters if signal is observed.

## **Quarks: Flavor**

CKM Matrix of Flavors: u,d,c,s,t,b



Wolfenstein Representation

Different Processes give different elements

## **CKM Triangle**

#### **Triangle from Unitarity**



**Perfect Measurements** 

#### **Kaons: Status**

- Kaon System is the only one in which CP Violation is observed.
- Only observed in K<sup>0</sup><sub>L</sub>!
- Is CP viol. Indirect, in the Mixing?

Is CP viol. Direct, in the Decays?

• Try to Measure ε'. E731, NA31,
Uncertainty 1 10-4 KTeV, NA48, KLOE

Close to Zero!

# "KAMI" Experiment Proposed

$$K_{L}^{0} = > \pi^{0} \nu \nu$$



- Note Aspect Ratio of Experiment
- Critical Elements,

Calorimeter, Vacuum γ Vetos Beam Hole veto

Fiber Tracker for Charged modes

#### "CKM" Experiment

#### **Proposed**

$$K^{+} ==> \pi^{+} \nu \nu$$



- Note Aspect Ratio of Experiment
- RF Separated Beam, K<sup>+</sup>, 22 GeV
- High Rates
- Hybrid Momentum/Velocity Spectrometer

#### "CPT" Experiment

#### **Proposed**

 $K^0$   $\eta_+$ . phase CPT Test at Planck Scale

 $\mathbf{K_{LS}^0}$  CP Violation :  $\pi^+ \pi^- e e$ ,  $\pi^0 e e$ 

 $\mathbf{K_{L}^{0}}$  :  $\pi^{0} \gamma \gamma$ 



- Short Experiment: maximise  $K^0_{L,S}$  Interference
- K<sup>0</sup> Beam from RF Separated K<sup>+</sup> Beam, 22 GeV

#### **FNAL Kaon Measurements**



#### **FNAL B** Measurements

# Interactions per Crossing: <u>Tevatron Collider</u>



### **The CDFII Detector**

#### RETAINED FROM CDFI

- Solenoidal magnet
- Central and wall calorimeters
- Central and extension muon detectors



## NEW FOR CDFII

- Tracking system
  - Silicon vertex detector (SVXII)
  - Intermediate silicon layers (ISL)
  - Central outer tracker (COT)
- Scintillating tile end plug calorimeter
- Intermediate muon detectors
- Front-end electronics (132 ns)
- Trigger system (pipelined)
- DAQ system (L1, L2, L3)

## **CDF Tracking**



### **D0 Detector**

#### **New for Run II**

- Solenoidal magnet
- Tracking, Fibers, Silicon
- Forward Muons
- Preshowers
- FE Elect., DAQ



## **D0 Fiber Tracker**



# D0 Silicon Microstrip Tracker



# **B Production Features**



# **BTeV Experiment**

### **BTeV**



Pixel Detector with 31 yxy Stations inside beam vacuum Dipole Magnet Steel Field Integral: 2.6T – m Vertical Bend Indicators of field direction

Wire Chambers with Aperature tan  $\theta = 0.3$ Rich ( $C_4F_{10}/C_5F_{12}$ ) Meaningful K/ $\pi$  separation for  $3.0 GeV/c. Optional areogel preradiator not shown EM Calorimeter: Options Pb-Scint, Pb-liq. Ar, liq Kr, CsI <math>\mu$  absorber and Toroid  $\mu$  trigger



### **B Physics: Status**



B<sub>c</sub> Observation



B Cross Section



- B Lifetimes
- Note higher mass states  $B_s$ ,  $\Lambda_b$

B Physics at Hadron Collider Established

### **B Physics Measurements**

•  $\sin 2\beta$ 

Run I  $\Delta \sin 2\beta = 1.8 + -1.1 \text{ (stat)} + -0.3 \text{ (syst)}$ Only "Same-side" Tagging, will improve Run II.. Expect  $\Delta \sin 2\beta < 0.1$ 

• B<sub>s</sub> Mixing 20,000 B<sub>s</sub> with SVT trigger



**x**<sub>s</sub> Reach 40 - 60

### **B Physics Measurements**

CP Violation in B<sub>s</sub>

$$-\mathbf{B}_{s} \rightarrow \mathbf{J}/\psi \phi$$



- $\sin 2\alpha$ ,  $\sin 2\gamma$ 
  - ( tough, need rate, id, space resolution)
- Rare Decays

### A Rich and Extensive Program

in good part beyond the B Factory reach

# **Electroweak Boson Couplings**

### WZ from D0

# CAL+TKS END VIEW 15-MAY-1997 13:27 Run 89912 Event 23020]26-MAR-1995 22:54 MAX ET = 51.6 GeV MISS ET(3)= 40.8 GeV ETA (MIN:-25-MAX: 255 EM (KD-MG (HAD ) MISS ET FLIC TAUS VEES OTHER

### **ZZ** event CDF



### Quantitative Expectations

- Factor of 20X in luminosity provides ~ 2.5X improvement in T.G.C. limit. (at fixed form factor scale).
- Numbers of events (CDF + D0) estimate.

$$W\gamma \rightarrow l\nu\gamma$$
 ~ 3000  
 $Z\gamma \rightarrow ee(\mu\mu)\gamma$  ~ 700  
 $WW \rightarrow ll\nu\nu$  ~ 100  
 $WZ \rightarrow lll\nu$  ~ 30  
 $ZZ \rightarrow e$ 's and  $\mu$ 's a few

### Qualitative Expectations

- Wg and WZ radiation zero.
- Probe theoretical expectations for T.G.C.'s.

# **W-Boson Mass**



# W mass Errors

|                                    | <b>CDF</b> | DO        |                    |
|------------------------------------|------------|-----------|--------------------|
| Statistical                        | 100        | <b>70</b> | 1                  |
| <b>Momentum/Energy Scale</b>       | 40         | <b>65</b> | <b>3</b> 95 (stat) |
| <b>Calorimeter Linearity</b>       |            | <b>20</b> |                    |
| <b>Lepton Resolution</b>           | 25         | 20        |                    |
| <b>Recoil Modeling</b>             | 90         | <b>40</b> |                    |
| Input p <sub>T</sub> (W) and PDF's | <b>50</b>  | 25        |                    |
| <b>Radiative Decays</b>            | 20         | 15        |                    |
| <b>Higher Order Corrections</b>    | 20         |           |                    |
| Backgrounds                        | 25         | 10        |                    |
| <b>Lepton Angle Calibration</b>    |            | <b>30</b> |                    |
| Fitting                            | 10         |           |                    |
| Miscellaneous                      | 20         | 15        |                    |
| Systematics                        | 115        | <b>70</b> |                    |
| Total (MeV)                        | 155        | 120       |                    |

Run Ib Measurements

# **W-Boson Mass**



- Lots of Systematic errors are dependent on data, for example Z calibrations, and hence scale as data.
- Underlying events/pile up affected by "perbunch" luminosity so reduced by having 100 bunches(132 nsec spacing)

# **Top Quark Mass**





### D0 (I+jets)





 $m_{top}$  [Gev/c<sup>2</sup>] 173.84+5.04 Tevatron Average

# **Top Quark Mass**





### Single experiment, l + jets

| UNCERTAINTY                        | RUN I | RUN II |
|------------------------------------|-------|--------|
| $(\mathbf{G}\mathbf{E}\mathbf{V})$ |       |        |
| Statistical                        | 5.6   | 1.3    |
| Jet Energy Calib.                  | 4.0   | 0.4    |
| Gluon ISR/FSR                      | 3.1   | 0.7    |
| <b>Detector Noise</b>              | 1.6   | 0.4    |
| etc                                |       |        |
| Fit Procedure                      | 1.3   | 0.3    |
| All Systematic                     | 5.5   | 0.9    |
| Total                              | 7.8   | 1.6    |

Other top quark physics,  $V_{tb}$ spin correlations,  $W_{L}$ , resonance?

# **Constraining the Higgs**



### **Beyond the Standard Model**

A Cornucopia of Imaginations

**Higher mass bosons** 

- mass reach approaches 1 TeV

Leptoquarks

**Compositeness** (Drell-Yan, Jets)

- sensitivity in > 5 TeV region

• Strong Coupling, Technicolor

• **SUSY** (The mainstream)

• Higgs (inc SM)

"Run II"
Workshops
Experiments &
Theorists

### **Technicolor**

- Strong EW Symm. Breaking is possible
- Cross sections are substantial

eg 
$$\omega_T ==> \pi_T + W$$

finds two new particles



### **SUSY**

### Sparticle Pair Production Cross Sections



- squark-gluino production cross sections drop rapidly w/ higher  $\tilde{g}$  masses where searches become kinematically limited
- $\tilde{\chi}_1^{\pm}$  and  $\tilde{\chi}_2^0$  are about 1/3 to 1/4 as massive as  $\tilde{q}$  and  $\tilde{g}$   $\Rightarrow$  their cross sections become dominant for high  $\tilde{g}$  mass

### **SUSY**

### Summary: SUGRA and GMSB Working Groups

SUGRA: Maximum mass reach  $(5\sigma)$  in  $GeV/c^2$ 

| SUSY particle                            | Run I           | Run II        |  |  |
|------------------------------------------|-----------------|---------------|--|--|
|                                          | $(0.1 fb^{-1})$ | $(2 fb^{-1})$ |  |  |
| $	ilde{\chi}_1^{\pm}$                    | 70(*)           | 210           |  |  |
| $	ilde{g}$                               | 270(*)          | 390           |  |  |
| $\tilde{t}_1(\to b\tilde{\chi}_1^{\pm})$ | » <del>-</del>  | 170           |  |  |

(\*) indicates 95% CL limit

GMSB: Maximum mass reach  $(5\sigma)$  in  $GeV/c^2$ 

| SUSY particle         | Run II        |
|-----------------------|---------------|
|                       | $(2 fb^{-1})$ |
| $	ilde{\chi}_1^{\pm}$ | 265           |
| $	ilde{	au}$          | 120           |

# **Higgs at the Tevatron**



- $gg \to H, WH, ZH$  cross sections include full QCD corrections
- $\bullet$  Higgs strahlung processes WH and ZH are accessible
- Higgs Yukawa couplings are enhanced in SUSY models

### **Higgs Branching Ratios**



# **Higgs at the Tevatron**



# **Higgs at the Tevatron**

SM Higgs,  $M_H > 130 \text{ GeV}$ 

Higgs Strahlung off W/Z Bosons



**Gluon-Gluon Fusion gg=> H** 



**Topologies** 







### $gg \rightarrow \mathrm{H}^0 \rightarrow \mathrm{WW}^{(*)}$ : Cluster Mass

• Before "Turning the Screw"



Normalization of the Background

 $10 \text{ fb}^{-1} \Rightarrow 3.1\% \text{ statistical error}$ 

Higgs contamination:  $S/B \sim 3 - 5\%$ 

### $gg \rightarrow \mathrm{H}^0 \rightarrow \mathrm{WW}^{(*)}$ : Cluster Mass

• After "Turning the Screw"



• WW background reduced by a factor of 40!  $(M_{
m H}=170)$ 

# **Higgs Sensitivities**

### Overview of SM Higgs Channel Sensitivities

|                  |               | Higgs mass $(\text{GeV}/c^2)$ |      |      |      |      |
|------------------|---------------|-------------------------------|------|------|------|------|
| channel          | nnel rate     |                               | 100  | 110  | 120  | 130  |
|                  | S             | 2.5                           | 2.2  | 1.9  | 1.2  | 0.6  |
| $ uar{ u}bar{b}$ | B             | 10.0                          | 9.3  | 8.0  | 6.5  | 4.8  |
|                  | $S/\sqrt{B}$  | 0.8                           | 0.7  | 0.7  | 0.5  | 0.3  |
| 98               | $\mathcal{S}$ | 8.4                           | 6.6  | 5.0  | 3.7  | 2.2  |
| $\ell  u b ar b$ | B             | 48                            | 52   | 48   | 49   | 42   |
|                  | $S/\sqrt{B}$  | 1.2                           | 0.9  | 0.7  | 0.5  | 0.3  |
| $l^{\pm}bar{b}$  | $\mathcal{S}$ | 1.0                           | 0.9  | 0.8  | 0.5  | 0.3  |
|                  | B             | 3.6                           | 3.1  | 2.5  | 1.8  | 1.1  |
|                  | $S/\sqrt{B}$  | 0.5                           | 0.5  | 0.5  | 0.4  | 0.3  |
| 5.0              | S             | 8.1                           | 5.6  | 3.5  | 2.5  | 1.3  |
| $qar{q}bar{b}$   | B             | 6800                          | 3600 | 2800 | 2300 | 2000 |
|                  | $S/\sqrt{B}$  | 0.10                          | 0.09 | 0.07 | 0.05 | 0.03 |

Expected # of events and sensitivity in  $\mathcal{L}=1\ fb^{-1}$ 

bbbar

- Run II acceptance
- 30% improved  $M_{bb}$  resolution

|                                   |              | Higgs mass $(\text{GeV}/c^2)$ |            |      |      |      |      |      |
|-----------------------------------|--------------|-------------------------------|------------|------|------|------|------|------|
| channel                           | rate         | 120                           | 130        | 140  | 150  | 160  | 170  | 180  |
| $\ell^{\pm}\ell'^{\pm}\ell^{\mp}$ | S            | 0.04                          | 0.08       | 0.11 | 0.12 | 0.15 | 0.10 | 0.09 |
|                                   | B            | 0.73                          | 0.73       | 0.73 | 0.73 | 0.73 | 0.73 | 0.73 |
|                                   | $S/\sqrt{B}$ | 0.05                          | 0.09       | 0.13 | 0.14 | 0.18 | 0.12 | 0.11 |
| A STATE OF STREET                 | S            | <u> </u>                      | · <u>=</u> | 2.6  | 2.8  | 1.5  | 1.1  | 1.0  |
|                                   | B            | <u>=</u>                      | -          | 44   | 30   | 4.4  | 2.4  | 3.8  |
|                                   | $S/\sqrt{B}$ |                               |            | 0.39 | 0.51 | 0.71 | 0.71 | 1.9  |
| $\ell^{\pm}\ell^{\pm}jj$          | S            | 0.10                          | 0.20       | 0.34 | 0.53 | 0.45 | 0.38 | 0.29 |
|                                   | B            | 0.85                          | 0.85       | 0.85 | 0.85 | 0.85 | 0.85 | 0.85 |
|                                   | $S/\sqrt{B}$ | 0.11                          | 0.22       | 0.37 | 0.57 | 0.49 | 0.41 | 0.31 |

11

# **Standard Model Higgs**

### Combined channel thresholds

- → Gaussian approximation in combination
- ightarrow 30% better  $m_{b\overline{b}}$  resolution than Run 1
- → Run 2 acceptance ×1.3 NN improvement
- → 10% systematic error on background
- ightarrow all except  $\ell^{\pm}\ell^{\pm}jj$



Revelation from November Run II Workshop!

# **SUSY Higgs**



# The MI Physics Program

- Main Injector Commissioning going well
- Collider CDF, D0 Start 2000
  - Electroweak, Top, sin 2β, B<sub>S</sub>
  - SUSY, Technicolor
  - Higgs Discovery?
- Neutrinos NuMI "Baselined"
  - Nail the Oscillations
- CP Violation, CPT violation in Kaons
  - R&D Projects
- BTeV, -R&D Project
- (FT QCD excellent potential)
- Broad Attack on Physics Frontiers